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Abstract Reinforcement learning research in humans and other species indicates that rewards 
are represented in a context-dependent manner. More specifically, reward representations seem to 
be normalized as a function of the value of the alternative options. The dominant view postulates 
that value context-dependence is achieved via a divisive normalization rule, inspired by perceptual 
decision-making research. However, behavioral and neural evidence points to another plausible 
mechanism: range normalization. Critically, previous experimental designs were ill-suited to disen-
tangle the divisive and the range normalization accounts, which generate similar behavioral predic-
tions in many circumstances. To address this question, we designed a new learning task where we 
manipulated, across learning contexts, the number of options and the value ranges. Behavioral and 
computational analyses falsify the divisive normalization account and rather provide support for the 
range normalization rule. Together, these results shed new light on the computational mechanisms 
underlying context-dependence in learning and decision-making.

Editor's evaluation
This important study presents a series of behavioral experiments that test whether value normal-
ization during reinforcement learning follows divisive or range normalization. Behavioral data from 
probe tests with two alternatives demonstrate convincingly that range normalization provides a 
better account for choice behavior and value ratings in this setting. These findings will be of interest 
for readers interested in neuroeconomics and cognitive neuroscience.

Introduction
The process of attributing economic values to behavioral options is highly context-dependent: the 
representation of an option’s utility does not solely depend on its objective value, but is strongly 
influenced by its surrounding (i.e., other options simultaneously or recently presented). This is true 
in an extremely wide range of experimental paradigms, ranging from decision among lotteries to 
reinforcement learning problems (Kahneman and Tversky, 1984; Huber et al., 1982; Klein et al., 
2017; Bavard et  al., 2018; Spektor et  al., 2019). This is also true for a wide variety of species, 
including mammals (Yamada et al., 2018; Conen and Padoa-Schioppa, 2019), birds (Pompilio and 
Kacelnik, 2010) and insects (Pompilio et al., 2006; Solvi et al., 2022). The pervasiveness of this 
effect across tasks and species suggests that context-dependence may reflect the way neuron-based 
decision systems address a fundamental computational trade-off between behavioral performance 
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and neural constraints (Fairhall et al., 2001; Padoa-Schioppa, 2009; Kobayashi et al., 2010; Louie 
and Glimcher, 2012).

Indeed, it has been showed that context-dependence often takes the form of a normalization 
process where option values are rescaled as a function of the other available options, which has the 
beneficial consequence of adapting the response to the distribution of the outcomes (Louie and 
Glimcher, 2012). The idea that neural codes and internal representations are structured to carry as 
much as information per action is the cornerstone of the efficient coding hypothesis, demonstrated 
both at the behavioral and neural levels, in perceptual decision-making (Reynolds and Heeger, 2009).

Probably due to its popularity in perception neuroscience, the dominant view regarding the 
computational implementation of value normalization in economic decisions postulates that it follows 
a divisive rule, according to which the subjective value of an option is rescaled as a function of the sum 
of the value of all available options (Louie et al., 2011; Louie et al., 2013; Louie et al., 2015; Webb 
et al., 2021; Pirrone and Tsetsos, 2022). In addition, to be validated in the perceptual domain, the 
divisive normalization rule also presents the appeal of being reminiscent of Herrnstein’s matching law 
for behavioral allocation (Herrnstein, 1961).

Even though, to date, most of the empirical studies proposing divisive normalization as a valid 
model of economic value encoding proposed that option values are vehiculated by explicit features of 
the stimulus (such as food snacks or lotteries: so-called described options; Hertwig and Erev, 2009; 
Louie et al., 2013; Garcia et al., 2021; Daviet and Webb, 2023), few recent studies have extended 
the framework to account for subjective valuation in the reinforcement learning (or experience-based) 
context (Juechems et al., 2022; Louie, 2022). Adjusting the divisive normalization model to a rein-
forcement learning scenario is easily achieved by assuming that the normalization step occurs at the 
outcome stage, that is, when the participant is presented with the obtained (and forgone) outcomes.

While predominant in the current neuroeconomic debate about value encoding and adaptive 
coding (Bucher and Brandenburger, 2022), the divisive normalization account of value normalization 
is not consensual (Padoa-Schioppa, 2009; Kobayashi et al., 2010; Padoa-Schioppa and Rustichini, 
2014; Burke et al., 2016; Gluth et  al., 2020). Indeed, range normalization represents a possible 
alternative account of value normalization and is made plausible by both behavioral and neural obser-
vations (Parducci, 1963; Rustichini et al., 2017). According to the range normalization rule, option 
values are rescaled as a function of the maximum and the minimum values presented in a context, 
irrespective of the number of options or outcomes (or set size; Conen and Padoa-Schioppa, 2019; 
Parducci, 1963; Bavard et al., 2021). Answering this question bears important consequences for 
neuroscience because understanding the scaling between objective and subjective outcomes is para-
mount to investigate the neural codes of economic values and understand the neural mechanisms 
of decision-making (Cox and Kable, 2014; Lebreton et al., 2019). Yet, the experimental paradigms 
used so far in reinforcement learning research were ill-suited to distinguish between two accounts of 
value normalization in the context of reinforcement learning (Klein et al., 2017). To address this issue, 
we designed a new reinforcement learning protocol where, by simultaneously manipulating outcome 
ranges and choice set sizes, we made the divisive and the range normalization predictions qualita-
tively diverge in many respects (Roberts and Pashler, 2000; Palminteri et  al., 2017.) We opted 
for a reinforcement learning paradigm because it has a greater potential for translational and cross-
species research (Garcia et al., 2021). In a total of eight experiments (N = 500 in total), we deployed 
several variations of this new behavioral protocol where we controlled for several factors. The behav-
ioral, model fitting and simulation results convergently rejected divisive normalization as a satisfactory 
explanation of the results in favor of the range normalization account. Results also suggested that the 
range normalization account should be further improved by a nonlinear weighting process. To check 
the robustness of our results across different elicitation methods and representational systems, we 
also assessed option values using explicit ratings. Values inferred from explicit, declarative, ratings 
were remarkably consistent with those inferred from more traditional, choice-based, methods.

Results
Computational hypotheses and ex ante model simulations
The goal of this study was to characterize the functional form of outcome (or reward) normalization 
in human reinforcement learning. More specifically, we aimed at arbitrating between two equally 
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plausible hypotheses: range normalization and divisive normalization. Both hypotheses assume that 
after reception of a given objective reward ‍R‍, the learner forms an internal, subjective, representation 
of it, ‍RNORM,‍ which is influenced by other contextually relevant rewards. Crucially, the two models 
differ in how ‍RNORM‍ is calculated. According to the range normalization hypothesis, the subjective 
normalized reward ‍RNORM‍ is defined as the position of the objective reward ‍R‍ within its contextual 
range:

	﻿‍
RNORM = R − RMIN

RMAX − RMIN ‍�
(1)

where ‍RMAX‍ and ‍RMIN ‍ are the endpoints of the contextually relevant distribution and together form 
the range (‍RMAX − RMIN ‍). On the other side, the divisive normalization hypothesis, in its simplest form, 
postulates that the subjective normalized reward ‍RNORM‍ is calculated by dividing the objective reward 
by the sum of all the other contextually rewards (Louie, 2022):

	﻿‍
RNORM = R∑n

k=1 Rk ‍�
(2)

where ‍n‍ is the number of contextually relevant stimuli. These hypotheses concerning value normaliza-
tion are then easily plugged into the reinforcement learning framework, simply by assuming that the 
value of an option is updated by minimizing a prediction error, calculated on the basis of the subjec-
tive reward. Although these normalization functions are mathematically distinct, they make identical 
(or very similar) behavioral predictions in many of the experimental protocols designed to investigate 
context-dependent reinforcement learning so far (Klein et al., 2017; Bavard et al., 2018; Spektor 
et al., 2019; Bavard et al., 2021; Palminteri et al., 2015). It should be noted here that, although 
divisive normalization has been more frequently applied to the prospective evaluation of described 
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Figure 1. Experimental design and model predictions of Experiment 1. (A) Choice contexts in the learning phase. Participants were presented with four 
choice contexts varying in the amplitude of the outcomes’ range (narrow or wide) and the number of options (binary or trinary decisions). (B) Means 
of each reward distribution. After each decision, the outcome of each option was displayed on the screen. Each outcome was drawn from a normal 
distribution with variance ‍σ2 = 4‍. NB: narrow binary, NT: narrow trinary, WB: wide binary, WT: wide trinary. (C) Model predictions of the transfer phase 
choice rates for the UNBIASED (left), DIVISIVE (middle), and RANGE (right) models. Note that choice rate in the transfer phase is calculated across all 
possible binary combinations involving a given option. While score is proportional to the agent’s preference for a given option, it does not sum to one 
because any given choice counts for the final score of two options. Dashed lines represent the key prediction for each model.
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outcomes (e.g., lotteries; snack-food items), rather than retrospective evaluation of obtained outcomes 
(e.g., bandits), it has both historical (Herrnstein, 1961) and recent (Louie, 2022) antecedents in the 
context of reinforcement learning. For the present study, we designed reinforcement learning tasks 
designed to adjudicate these computational hypotheses. The key idea behind our behavioral protocol 
is to orthogonally manipulate, across different learning contexts, the amplitude of the range of the 
possible outcomes and the number of options (often referred to as choice size set; Figure 1A; see 
also Figure 2—figure supplement 2A for an alternative version). The first factor (the amplitude of the 
range of the possible outcomes) is key to differentiate an unbiased model (where ‍RNORM = R‍) from 
both our normalization models. The second factor (number of options) is key to differentiate the range 
normalization from divisive normalization. The reason for this can easily be inferred from Equations 1 
and 2 because adding more outcomes has a significant impact on the subjective reward ‍RNORM‍ only 
following the divisive normalization rule (Daviet and Webb, 2023; as clearly put by the main advocate 
of the divisive normalization rule for value-based decision-making: “[…] a system would be highly 
sensitive to the number of options under consideration. As the number of elements in the denomi-
nator grows, so does the aggregate value of the denominator, shifting the overall firing rates lower 
and lower” (Glimcher, 2022, page 14). To quantitatively substantiate these predictions, we ran model 
simulations using three models. We compared a standard model with unbiased subjective values 
(UNBIASED), and two normalization models using either the divisive or the range normalization rules 
(referred to as DIVISIVE and RANGE, respectively). First, we simulated a learning phase, where each 
learning context in our factorial design was presented 45 times. After each trial, the simulated agent 
was informed about the outcomes that were drawn from normal distributions (Figure 1B). To avoid 
sampling issues and ambiguity concerning the definition of the relevant normalization variables, the 
simulated agents were provided information about the outcomes of all options (‘complete’ feedback; 
Hertwig and Erev, 2009; Li and Daw, 2011). After the learning phase, the simulated agents went 
through a transfer phase, where they made decisions among all possible binary combinations of the 
options (without additional feedback being provided). Similarly constructed experiments, coupling 
a learning to a transfer phase, have been proven key to demonstrate contextual effects in previous 
studies (Klein et al., 2017; Bavard et al., 2018; Pompilio and Kacelnik, 2010; Bavard et al., 2021; 
Palminteri et al., 2015; Hayes and Wedell, 2022; Juechems et al., 2022). When analyzing model 
simulations, we focused on choice patterns in the transfer phase (of note, accuracy during the learning 
phase is weakly diagnostic because all models predict above chance accuracy and, to some extent, 
a choice size set effect, whose level depends on the choice stochasticity parameter of the softmax 
decision rule). Figure 1C plots the average simulated choice rate in the transfer phase. For a given 
option, the transfer phase choice rate was calculated by dividing the number of times an option is 
chosen by the number of times the option is presented. In the transfer phase, the 10 cues from the 
learning phase were presented in all possible binary combinations (45, not including pairs formed by 
the same cue). Each pair of cues was presented four times, leading to a total of 180 trials. Since a 
given comparison counts for the calculation of the transfer phase choice rate of both involved options, 
this implies that this variable will not sum to one. Nonetheless, the relative ranking between transfer 
choice rate can be taken as a behavioral proxy of their subjective values.

Crucially, even if the transfer phase involves only binary choices, it can still tease apart the normal-
ization rules affecting outcome valuation during the learning phase. This is because transfer choices 
are made based on the memory of values acquired during the learning phase, where we purposely 
manipulated the number of options and their ranges of values, in order to create learning contexts 
that allow to confidently discriminate between the two normalization accounts, in the reinforcement 
learning context.

Unsurprisingly, within each learning context, in all models the choice rates are higher for high-
value options compared to lower value options. However, model simulations show that the models 
produce choice patterns that differ in many key aspects. Let’s start considering the UNBIASED model 
as a benchmark (Figure 1C, left). Since it encodes outcomes in an unbiased manner, it predicts higher 
choice rates for the high-value option in the ‘wide’ contexts (WB86 and WT86) compared to high-
value options in the ‘narrow’ contexts (NB50 and NT50). On the other side, the UNBIASED model 
predicts that choice rate in the transfer phase is not affected by whether or not the option belonged 
to a binary or a trinary learning context. Moving to the DIVISIVE model, we note that the difference 
between the choice rates of high-value options of the ‘wide’ contexts (WB86 and WT86) compared 

https://doi.org/10.7554/eLife.83891


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Bavard and Palminteri. eLife 2023;12:e83891. DOI: https://doi.org/10.7554/eLife.83891 � 5 of 22

those of the ‘narrow’ contexts (NB50 and NT50) is now much smaller due to the normalization process 
(Figure  1C, middle). However, the DIVISIVE model also predicts that the choice rate is strongly 
affected by whether or not the option belonged to a binary or a trinary learning context. For instance, 
WB86 and NB50 present a much higher choice rate compared to WT86 and NT50, respectively, despite 
their objective expected value being the same. This is an easily identifiable and direct consequence 
of the denominator of the divisive formulation rule increasing as a function of the number of options 
(Equation 2). Concerning the RANGE model (Figure 1C, right), it predicts choice rates being similar 
across all high-value options, regardless of their objective values (because of the normalization) and 
whether or not the option belonged to a trinary or binary context (because of the range normalization 
rule; Equation 1). Finally, the choice rates of the low-value (14) options also discriminate the DIVISIVE 
model, where it is strongly modulated by the task factors, from the other two models, where all low-
value options present the same choice rate. To conclude, model simulations confirm that our design, 
involving a factorial learning phase and a transfer phase, is well suited to disentangle our three a priori 
models because they predict qualitatively differentiable patterns of choices (see also Figure 2—figure 
supplement 2C for similar conclusions based on an alternative task design; Palminteri et al., 2017; 
Teodorescu and Usher, 2013).

Behavioral results
The above-described behavioral protocol was administered to N = 50 participants recruited online, 
who played for real monetary incentives as previously described (Bavard et al., 2021). We first tested 
whether the correct choice rate (i.e., the probability of choosing the option with the highest expected 
value) was overall above chance level during the learning phase to ensure that the participants 
engaged in the task. Indeed, correct response rate was significantly higher than chance level (0.5 and 
0.33 in the binary and trinary learning contexts, respectively) in all conditions (least significant compar-
ison: t(49) = 18.93, p<0.0001, d = 2.68; on average: t(49) = 24.01, p<0.0001, d = 3.96; Figure 2A). 
We further checked whether the task factors affected performance in the learning phase and found a 
significant effect of the decision problem (the correct choice rate being higher in the binary compared 
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Figure 2. Behavioral results of Experiment 1. Top: successive screens of a typical trial for the three versions of the main experiment: without forced trials 
(A), with forced trials and complete feedback information (B) and with forced trials and partial feedback information (C). Bottom: correct choice rate in 
the learning phase as a function of the choice context (left panels), and choice rate per option in the transfer phase (right panels) for the three versions 
of the main experiment: without forced trials (A), with forced trials and complete feedback information (B) and with forced trials and partial feedback 
information (C). In all panels, points indicate individual average, shaded areas indicate probability density function, 95% confidence interval, and SEM 
(n=50). NB: narrow binary, NT: narrow trinary, WB: wide binary, WT: wide trinary.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Behavioral results of the pilot Experiment similar to Experiments 1 and 2.

Figure supplement 2. Experimental design, model predictions, and behavioral results concerning Experiment 2.
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to the trinary contexts: F(1,49) = 9.26, p=0.0038, η² = 0.16), but no effect of range amplitude (wide 
versus narrow; F(1,49) = 0.52, p=0.48, η² = 0.01) nor interaction (F(1,49) = 2.23, p=0.14, η² = 0.04).

We next turned to the results of the transfer phase. Following the analytical strategy used in 
previous studies, we first checked that the correct choice rate in the transfer was significantly higher 
than chance (t(49) = 9.10, p<0.0001, d = 1.29), thus providing positive evidence of value retrieval and 
generalization (Bavard et al., 2018; Bavard et al., 2021; Hayes and Wedell, 2022). We analyzed 
the choice rate per symbol, which is the average frequency with which a given symbol is chosen in 
the transfer phase, and can therefore be taken as a measure of the subjective preference for a given 
option (Bavard et al., 2018; Palminteri et al., 2015). We focus on key comparisons that crucially 
discriminate between competing models of normalization. First, and contrary to what was predicted 
by the DIVISIVE model, the choice rate for the high-value options in the trinary contexts (NT50 and 
WT86) was not lower compared to that of the binary ones (NB50 and WB86). Indeed, if anything, their 
choice rate was higher (NT50 vs. NB50: t(49) = 1.66, p=0.10, d = 0.29; WT86 vs. WB86: t(49) = 2.80, 
p=0.0072, d = 0.53). Similarly, the choice rate of the low-value options was not affected by their 
belonging to a binary or trinary context in the direction predicted by the DIVISIVE model. Concerning 
other features of the transfer phase performance, some comparisons were consistent with the UNBI-
ASED model and not with the RANGE model, such as the fact that high-value options in the narrow 
contexts (NB50 and NT50) displayed a lower choice rate compared to the high-value options of the 
wide contexts (WB86 and WT86; t(49) = −4.19, p=0.00011, d = −0.72), even if the size of the difference 
appeared to be much smaller to that expected from ex ante model simulations (Figure 1C, right). 
Other features were clearly more consistent with the RANGE model. For instance, the fact that the 
mid-value option in the wide trinary context WT50 displayed a significantly lower choice rate compared 
to the high-value options in the narrow contexts (NT50 and NB50) was not predicted by the UNBIASED 
model. One feature was not explained by any of the models, such as the higher choice rate for the 
high-value options in the trinary contexts (NT50 and WT86) compared to the binary contexts (NB50 and 
WB86; t(49) = 3.53, p=0.00090, d = 0.50; please note that the statistical test stays significant when 
taking into account all experiments: t(149) = 4.11, p<0.0001, d = 0.34). Of note, the direction of the 
effect for this comparison is in stronger contrast with the DIVISIVE (which predicts a difference in the 
opposite direction) compared the RANGE and UNBIASED models (which predict no difference).

Finally, the mid-value options (NT32 and WT50) displayed a choice rate very close to that of the 
corresponding low-value options (NT14 and WT14): this feature is clearly in contrast with both the 
DIVISIVE and UNBIASED models (which predict their choice rate closer to that of the corresponding 
high-value options: NT50 and WT86), but not perfectly captured either by the RANGE model (which 

Table 1. Experimental design.
Each version of each experiment was composed of four different learning contexts. Results of 
Experiments 1 and 3 are presented in the main text; results of Experiment 2 are presented in 
Figure 2—figure supplement 2. Entries inside square brackets represent the mean outcomes for 
the lowest, mid (when applicable), and highest value option in a given context. Concerning ‘forced 
choices,’ ‘unary’ refers to situations where only one option is available and the participants cannot 
make a choice; ‘binary’ refers to situations where the participant can choose between two out of 
three options (the high-value option cannot be chosen).

N
Learning contexts N forced choices(type / 

feedback)[14,50] [14,32,50] [50,86] [50,68,86] [14,86] [14,50,86]

Experiment 1a 50 X X X X 0

Experiment 1b 50 X X X X 50 (unary / complete)

Experiment 1 50 X X X X 50 (unary / partial)

Experiment 2a 50 X X X X 0

Experiment 2b 50 X X X X 50 (unary / complete)

Experiment 2c 50 X X X X 50 (unary / partial)

Experiment 3a 100 X X 90 (binary / complete)

Experiment 3b 100 X X 135 (binary / complete)

https://doi.org/10.7554/eLife.83891
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predicts their choice rate exactly in between those of high- and low-value options). To rule out that 
this effect was not due to a lack of attention for the low- and mid-value options, we designed two 
additional experiments where we added forced-choice trials to focus the participants’ attention on 
all possible options (Table  1; Chambon et  al., 2020). In one experiment (N = 50), forced-choice 
trials were followed by complete feedback (Figure 2B), in another experiment (N = 50) forced-choice 
trials were followed by partial feedback (Figure 2C). Focusing participants’ attention to all possible 
outcomes by forcing their choice did not significantly affect the behavioral performance neither in the 
learning phase (F(2,147) = 2.75, p=0.067, η² = 0.04, Levene’s test F(2,147) = 2.43, p=0.092) nor in 
the transfer phase (F(2,147) = 0.64, p=0.53, η² = 0.00, Levene’s test F(2,147) = 0.64, p=0.53). This 
suggests that the choice rates of the mid options reflect their underlying valuation (rather than lack 
of information). Given the absence of detectable differences across experiments, in the model-based 
analyses that follow, we pooled the three experiments together. To sum up, behavioral results, specif-
ically in the transfer phase, are in contrast with the predictions of the DIVISIVE model and are rather 
consistent with the range normalization process proposed by the RANGE model. Behavioral results 
in three experiments (N = 50 each) featuring a slightly different design, where we added a mid-value 
option (NT68) between NT50 and NT87, converge to the same broad conclusion: the behavioral pattern 
in the transfer phase is largely incompatible with that predicted by outcome divisive normalization 
during the learning phase (Figure 2—figure supplement 2). In the following section, we substantiate 
these claims by formal model comparison and ex post model simulations analysis.

Table 2. Quantitative model comparison in Experiments 1 and 2.
Values reported here represent mean ± SD and median of out-of-sample log-likelihood for each 
model.

Model

Experiment 1 (N = 150)
Out-of-sample log-likelihood

Experiment 2 (N = 150)
Out-of-sample log-likelihood

Mean ± SD Median Mean ± SD Median

UNBIASED –275.31 ± 268.75 –162.53 –227.24 ± 269.72 –125.40

DIVISIVE –143.38 ± 70.40 –124.91 –159.89 ± 65.20 –141.07

RANGE –116.72 ± 57.91 –109.23 –109.71 ± 43.91 –106.83

RANGE (ω) –97.70 ± 55.52 –78.73 –91.99 ± 37.79 –79.57

Figure 3. Qualitative model comparison. Behavioral data (black dots, n=150) superimposed on simulated data (colored bars) for the UNBIASED (A), 
DIVISIVE (B), and RANGE (C) models. Simulated data in the transfer phase were obtained with the best-fitting parameters, optimized on all four contexts 
of the learning phase. Dashed lines represent the key prediction for each model.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Ruling out more complex forms of divisive normalization.

Figure supplement 2. Choice rates per option in the transfer phase and model simulations.

Figure supplement 3. Model attributions across participants.
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Model comparison and ex post model simulations
Behavioral analyses of transfer phase choices suggest that learning and valuation are more consis-
tent with the predictions of the RANGE model compared to those of the UNBIASED or the DIVI-
SIVE model. To quantitatively substantiate this claim, we formally compared the quality of fit of the 
three models using an out-of-sample log-likelihood (Wilson and Collins, 2019). Specifically, we first 
optimized the models’ free parameters (learning rates and choice inverse temperature) in order to 
maximize the log-likelihood of observing the learning phase choices, given the model and the param-
eters. We then used these parameters to generate the log-likelihood of observing the choices in the 
transfer phase, which were not included in the original model fitting. The RANGE model displayed a 
much higher mean and median out-of-sample log-likelihood (which indicated better fit) compared to 
both the DIVISIVE and the UNBIASED models (oosLLRAN vs. oosLLDIV: t(149) = 10.10, p<0.0001, d = 
0.41; oosLLRAN vs. oosLLUNB: t(149) = 8.34, p<0.0001, d = 0.82; Table 2). Subsequently, we simulated 
transfer choice phase using the best fitting, that is, empirical, parameter values (Figure 3). The results 
of this ex post simulations confirmed what was inferred from the ex ante simulations and indicated 
that the RANGE model predicted results much closer to the observed ones, in respect of many key 
comparisons. All these results were replicated in three additional experiments feature with slightly 
different design, where the DIVISIVE model displayed a higher mean log-likelihood compared to the 
UNBIASED model, indicating no robust improvement in the quality of fit (see Table 2). Despite the 
superiority of the RANGE model in terms of both predictive (out-of-sample log-likelihood) and gener-
ative (simulation) performance (Wilson and Collins, 2019) compared to the UNBIASED and DIVISIVE 
one, it still failed to perfectly capture transfer phase preference, specifically concerning the mid-value 
options. In the subsequent section, we propose how the RANGE model could be further improved to 
obviate this issue.

Improving the RANGE model
Although model comparison and model simulation both unambiguously favored the RANGE model 
over the UNBIASED and DIVISIVE models, the RANGE model is not perfect at predicting participants’ 

Figure 4. Predictions of the nonlinear RANGE model. (A) Curvature function of the normalized reward per participant. Each gray line was simulated 
with the best-fitting power parameter ‍ω‍ for each participant. Dashed line represents the identity function (‍ω = 1‍), purple line represents the average 
curvature over participant, and shaded area represents SEM. (B) Behavioral data (black dots, n=150) superimposed on simulated data (colored bars) for 
the RANGEω model. Simulated data in the transfer phase were obtained with the best-fitting parameters, optimized on all four contexts of the learning 
phase. Dashed lines represent the key prediction for the model.

https://doi.org/10.7554/eLife.83891
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choices in the transfer phase (Figure 3C). As mentioned previously, the mid-value options in trinary 
contexts (NT32 and WT50) displayed a choice rate closer to that of the corresponding low-value options 
(NT14 and WT14): a feature that was not captured by the RANGE model, which predicts their choice 
rate to be exactly halfway of those of low-value (NT14 and WT14) and high-value (NT50 and WT86) 
options. In addition, the choice rate of low-value options of all contexts (NB14, NT14, WB14, and WT14) 
was underestimated by the RANGE model. These observations are prima facie compatible with the 
idea that outcomes are not processed linearly (Bernoulli, 1738; Ludvig et al., 2018). To formally test 
this hypothesis with the goal of improving the RANGE model, we augmented it with a free parameter 
‍ω‍ that applies a nonlinear transformation to the normalized outcome. More specifically, in this modi-
fied RANGE model (RANGEω), the normalized outcome is power-transformed by the ‍ω‍ parameter 
(‍0 < ω < +∞‍) as follows:

	﻿‍
RNORM =

(
R − RMIN

RMAX − RMIN

)ω

‍�
(3)

Crucially, for ‍ω = 1‍, the RANGEω reduced to the RANGE model; for ‍ω < 1‍, the RANGEω model 
induces a concave deformation of the normalized outcome; for ‍ω > 1‍, the RANGEω model induces 
a convex deformation of the normalized outcome. Quantitative model comparison favored the 
RANGEω model over all other models, including the RANGE model (Table 2) (oosLLRAN vs. oosLLRAN(ω): 
t(149) = −6.98, p<0.0001, d = −0.57; Table 2). The inspection of model simulations confirmed that 
the RANGEω model closely captures participants’ behavior in the transfer phase. More specifically, 
the mid-value options (NT32 and WT50) and the low-value options (NB14, NT14, WB14, and WT14) were 
better estimated in all contexts (Figure 4A; this was also true for Experiment 2; see Figure 6—figure 
supplement 1). On average, the power parameter ‍ω‍ was >1 (mean ± SD: 2.97 ± 1.36, t(149) = 17.81, 
p<0.0001, d = 1.45), suggesting that participants value the mid outcome less than the midpoint 
between the lowest and highest outcomes (i.e., closer to the low-value option, Figure 4B).

Investigating the attentional mechanisms underlying weighted 
normalization
However, our current design does not allow to tease apart two possible mechanisms underlying 
subjective weighting of outcome captured by power transformation. One possibility (implicit in the 
formulation we used) is that participants ‘perceive’ mid outcomes as being closer to the low one 
because the high outcome ‘stands out’ due to its value. Another possibility is that participants give a 
higher subjective weighting to chosen outcomes because of the very fact that they were chosen and 
obtained. The current design and results do not allow to tease apart these interpretations because 
during the learning phase the mid-value options were chosen as much as the low-value options (7.2% 
and 6.8%, t(149) = 0.97, p=0.33, d = 0.04) and therefore mid outcomes were almost systematically 
unchosen outcomes.

To address this issue, we ran two additional experiments (Experiments 3a and 3b), featuring, as 
before, wide and narrow learning contexts (Figure 5A). The key manipulation in this new experiment 
consisted of learning contexts where we interleaved trinary choices with binary choices, where the 
high-value option was presented but not available to the participant (Figure 5B). We reasoned that by 
doing so we would be able to increase the number of times the mid-value options were chosen. The 
manipulation was successful in doing so: in the learning contexts featuring binary choices, the mid-
value options were chosen on 48% of the trials (Experiment 3a) and 67% (Experiment 3b); significantly 
more than the corresponding high-value option in the same learning context (Experiment 3a, wide: 
t(99) = 6.03, p<0.0001, d = 0.95; narrow t(99) = 5.43, p<0.0001, d = 0.80; Experiment 3b, wide: t(99) 
= 33.27, p<0.0001, d = 4.47; narrow t(99) = 34.06, p<0.0001, d = 4.33; Figure 5—figure supplement 
1).

We then turned to the analysis of the transfer choices and found that the manipulation was also 
effective in manipulating the mid-value option, so that in the contexts featuring binary choices (i.e., 
impossibility of choosing the high-value options), the mid options were valued more compared to 
the full trinary contexts (i.e., when they were almost never chosen) (Experiment 3a, wide: t(99) = 
22.80, p<0.0001, d = 3.46; narrow: t(99) = 20.10, d = 3.06, p<0.0001; Experiment 3b, wide: t(99) = 
21.96, p<0.0001, d = 3.88; narrow t(99) = 20.46, p<0.0001, d = 3.76; Figure 5C). Interestingly, the 
results were virtually identical in the experiment with 50% and that with 25% trinary trials despite the 
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choosiness of the high-value options being very different in the two experiments. In addition, the 
signatures of range adaptation (narrow vs. wide) being replicated, we pooled the experiments in the 
main figure.

The behavioral results thus suggest that mid outcomes, although range normalized, can be 
valued correctly in between the lowest and the highest outcome if we force choices toward the mid-
value option. These results are therefore consistent with the hypothesis that outcome weighting is 
contingent with option choosiness rather than a bias in outcome evaluation per se. To objectify this 
conclusion, we compared the RANGEω previously described, with a more complex one (RANGEω+) 
where two different power ‍ω‍ parameters apply to the obtained (chosen: ‍ωc‍) and forgone (unchosen: 
‍ωu‍) outcomes. This augmented model displayed better higher quality of fit in both experiments (as 
proxied by the out-of-sample log-likelihood of the transfer phase; oosLLRAN(ω) vs. oosLLRAN(ω+): t(199) 
= −7.73, p<0.0001, d = −0.30). This quantitative result was backed up by model simulations analysis 
showing that only the RANGEω+ was able to capture the change in valuation in the mid-value options 

Figure 5. Experimental design and main results of Experiment 3. (A) Choice contexts in the learning phase. Participants were presented with four 
choice contexts varying in the amplitude of the outcomes’ range (narrow or wide) and the number of available options (trinary or binary decisions). 
(B) Trial sequence for a binary trial (50 or 75% of the total number of learning trials), where the high-value option was presented but not available to 
the participant, and a standard trinary trial (50 or 25% of the total number of learning trials). (C) Behavioral data (black dots, n=200) superimposed 
on simulated data (colored bars) for the RANGEω and RANGEω+ models. Simulated data in the transfer phase were obtained with the best-fitting 
parameters, optimized on all four contexts of the learning phase. Dashed lines represent the key prediction for the model. (D) Curvature functions of 
the normalized reward per participant. Each gray line was simulated with the best-fitting power parameters ‍ωc‍ and ‍ωu‍ for each participant. Dashed line 
represents the identity function (‍ω = 1‍), purple line represents the average curvature over participant, and shaded area represents SEM. Results in (C) 
and (D) are pooled data for Experiments 3a and 3b.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Design and behavioral results of Experiment 3.

https://doi.org/10.7554/eLife.83891
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(Figure 5C). Finally, we compared the weighting parameters and found ‍ωc‍ significantly lower than ‍ωu‍ 
(t(199) = −17.28, p<0.0001, d = −1.92; Figure 5D). To conclude, these additional experiments further 
clarify the cognitive mechanisms (and specifically the role of attention) underlying outcome encoding.

Explicit assessment of option values
In addition to the transfer phase, participants performed another value elicitation assessment, where 
they were asked to explicitly rate the average value of each option using a slider ranging from 0 to 
100. This explicit elicitation phase allowed us to have a complementary estimation of participants’ 
subjective valuations of each option to compare them with the choice-based transfer phase. The 
subjective values elicited through explicit ratings were consistent with those elicited in the transfer 
phase hrough binary choices in many key aspects (Figure 6A). Indeed, against what was predicted 
by the DIVISIVE principle, option subjective values did not depend on the number of options in each 
context, but rather on their ordinal value within the context (minimum, mid, maximum). This pattern 
is even clearer when looking at the difference between reported subjective values and the objective 
values of each option (Figure 6B). Crucially, the subjective value of the options with an objective 

Figure 6. Results from the explicit elicitation phase of Experiments 1 and 3. (A, D) Reported subjective values in the elicitation phase for each option, 
in Experiment 1 (A, n=150) and Experiment 3 (D, n=200). Points indicate individual average, and shaded areas indicate probability density function, 
95% confidence interval, and SEM. Purple areas indicate the actual objective value for each option. (B, E) Difference between reported subjective value 
and actual objective value for each option, arranged in ascending order, in Experiment 1 (B) and Experiment 3. The legend of the x-axis represents 
the values of the options of the context in which each option was learned (actual option value shown in bold). Points indicate individual average, and 
shaded areas indicate probability density function, 95% confidence interval, and SEM. (C, F) Behavioral choice-based data (black dots) superimposed on 
simulated choice-based data (colored bars), in Experiment 1 (C) and Experiment 3 (F). Simulated data were obtained with an argmax rule assuming that 
participants were making transfer phase decision based on the explicit subjective ratings of each option.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Qualitative model comparison and explicit ratings of Experiment 2.

https://doi.org/10.7554/eLife.83891
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value of 50 (NB50, NT50, and WT50) is completely determined by its position in the range of its context, 
and not by the total sum of the options in this context. Finally, to compare elicitation methods, we 
simulated transfer phase choices based on the explicit elicitation ratings. More specifically, for each 
participant and comparison, we generated choices using an argmax selection rule on the subjective 
values they explicitly reported for each option (see Equation 10). We found the pattern simulated 
using explicit ratings to closely match the actual choice rates of the transfer phase (simulated data 
vs. behavioral data per option: Spearman’s ρ(8) = 0.99, p<0.0001, Figure 6C), suggesting that both 
elicitation methods tap into the same valuation system. Similar results and conclusions could be drawn 
from Experiment 2 (Spearman’s ρ(8) = 0.99, p<0.0001, Figure 2—figure supplement 2) and Exper-
iment 3, where we confirmed that the explicit ratings of a given option were highly dependent on 
its position within the range (see Figure 6D and E). Furthermore, we also confirmed that the pattern 
simulated using explicit ratings closely matched the actual choice rates of Experiment 3 transfer phase 
(simulated data vs. behavioral data per option: Spearman’s ρ(10) = 1.00, p<0.0001, Figure 6C).

Discussion
In this article, we sought to challenge the current dominant view of how value-related signals are 
encoded for economic decision-making. More precisely we designed behavioral paradigms perfectly 
tailored to discriminate between unbiased (or ‘absolute’) representations from context-dependent or 
normalized representations following different, antagonist, views. To do so, we deployed a series of 
six behavioral reinforcement learning experiments consisting of an initial learning phase (where partic-
ipants learned to associate options to rewards) and a transfer – or generalization – phase allowing us 
to infer the subjective learned value of each option (Palminteri and Lebreton, 2021).

By systematically manipulating outcome ranges, we were able to confirm that behavioral data was 
inconsistent with the idea that humans learn and represent values in an unbiased manner. Indeed, 
subjective values were similar for the options presented in the decision contexts with narrow or 
wide decision ranges despite their objective values being very different. This result was quantita-
tively backed up by both model simulations and out-of-sample likelihood analyses that suggested 
the unbiased model being worst on average than any other normalization model. Thus, our findings 
significantly add up to the now overwhelming body of evidence indicating that value representa-
tions are highly context-dependent even in the reinforcement learning scenario, both in human (Klein 
et al., 2017; Bavard et al., 2018; Spektor et al., 2019; Juechems et al., 2022; Bavard et al., 2021; 
Palminteri et al., 2015; Hayes and Wedell, 2022) and nonhuman animals (Yamada et al., 2018; 
Conen and Padoa-Schioppa, 2019; Pompilio and Kacelnik, 2010; Pompilio et al., 2006; Solvi et al., 
2022; Matsumoto and Mizunami, 2004; Ferrucci et al., 2019).

On the other side, by contrasting binary to trinary options decision problems, we were able to 
provide robust evidence against the idea that value context-dependence follows the functional form 
of divisive normalization in the reinforcement learning scenario (Louie and Glimcher, 2012; Louie 
et al., 2015; Louie, 2022; Glimcher, 2022; Daviet and Webb, 2023). Our demonstration relied on 
the straightforward and well-accepted idea that virtually any instantiation of the divisive normalization 
model would predict a strong (we specify ‘strong’ because a minimal non-null choice set size effect is 
also predicted by simply assuming choices deriving from a softmax decision rule) choice (description-
based task) or outcome (reinforcement-based task) set size effect: all things being equal, the subjec-
tive value of an option or an outcome in a trinary decision context should be lower compared to 
that of a similar value belonging to a binary context. We find no evidence for such an effect. In fact, 
if anything, the subjective values of options belonging to trinary decision contexts were numerically 
higher compared to that of the binary decision contexts. Beyond the quantitative analysis of behav-
ioral performance, model fitting and simulations analysis also revealed that the divisive normalization 
model dramatically failed to correctly reproduce the behavioral pattern (Palminteri et  al., 2017). 
Crucially, this was also true for fully parameterized versions of the divisive normalization model (Webb 
et al., 2021; Figure 3—figure supplement 1).

The behavioral results were rather consistent with an alternative rule, range normalization, according 
to which subjective value signals are normalized as a function of the maximum and minimum values 
(regardless of the number of options). This normalization rule is reminiscent of the range principle 
proposed by Parducci to explain perceptual (and later also affective) judgments (Parducci, 1995). In 
contrast to divisive normalization, range normalization predicts that contextually high- and low-value 
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options are assigned the same subjective value regardless of their absolute value and the number of 
options in a given choice set. This behavior hallmark of divisive normalization was falsified in all exper-
iments. Of note, although the quality of the fit of the range normalization model was significantly 
better compared to that of the divisive normalization model, in terms of both predictive accuracy (out-
of-sample likelihood) and behavioral signatures, it manifestly failed to properly capture the subjective 
values attributed to the mid-value options in trinary choice contexts. This pattern was not affected 
by introducing forced-choice trials to focus the participants’ attention on mid-option outcomes (for 
at least five trials) (Chambon et  al., 2020). To further improve the range normalization model fit, 
we endowed it with a nonlinear weighting of normalized subjective values. Nonlinear weighting 
parameters, although they do not provide mechanistic accounts, are often introduced in models of 
decision-making to satisfactorily account for utility and probability distortions (Hertwig and Erev, 
2009; Wakker, 2010). Introducing this weighting parameter improved the model fit qualitatively and 
quantitatively in a substantial manner. Importantly, introducing the same parameter into the divisive 
model did not improve its performance significantly (Figure 3—figure supplement 1). The weighted 
range normalization model improved the fit assuming that the mid- and low-value options are subjec-
tively perceived as much closer than they are in reality. We believe that this may derive from atten-
tional mechanisms that bias evidence accumulation as a function of outcomes and option expected 
values (Spektor et al., 2019; Krajbich et al., 2010; Zilker and Pachur, 2022). To further probe this 
hypothesis, we designed and ran an additional experiment (Experiment 3) where we manipulate the 
possibility of choosing the high-value option in trinary learning contexts. This manipulation success-
fully managed to ‘correct’ the subjective valuation of mid-value options (while leaving unaffected the 
valuation of the other options). The behavior in this experiment was successfully captured by further 
tweaking the weighted range normalization model by assuming that different weighting parameters 
apply to the chosen and unchosen outcomes. By finding concave and convex weighting functions 
for the chosen and unchosen outcomes, respectively, the model managed to explain why forcing the 
participant to choose the mid-value option increases its subjective valuation. We believe that these 
results further reinforce the hypothesis that outcome valuation interacts with attentional deployment. 
In fact, it is reasonable to assume that the obtained outcome is attended more than the forgone ones 
(after all it is the more behaviorally relevant outcome) and that increased attention devoted to the 
obtained outcomes “boosts” its value (Krajbich et al., 2010). This effect can also be conceptually 
linked to a form of choice-confirmation bias, where the mid-value outcome is perceived as better than 
it actually is (Chambon et al., 2020).

In addition to assessing subjective values using choices as standardly done in behavioral economics 
and nonhuman animal-based neuroscience, we also assessed subjective option values using explicit 
ratings (Garcia et al., 2021). Despite the fact that a wealth of evidence in decision-making research 
suggests that subjective values are highly dependent on whether they are inferred from choices or 
ratings (also referred to as the revealed versus stated preferences dichotomy; Lichtenstein and Slovic, 
2006), post-learning explicit ratings delivered results remarkably consistent with choice-revealed pref-
erences. Indeed, transfer phase choices could almost perfectly be reproduced from explicit ratings, 
which were, in turn, more consistent with range, rather than divisive normalization process. In addi-
tion to provide a welcome test of robustness of our results, the similarity between choice-based 
and rating-based subjective values also demonstrates the context-dependent valuation span across 
procedural as well as declarative representational systems (Gershman and Daw, 2017; Biderman and 
Shohamy, 2021).

Beyond the specific question of its functional form, one could ask why option values would be 
learned and represented in a relative or normalized manner? In other terms, what is the functional 
reason for context-dependent representations? One partial answer to this question can be tracked to 
studies showing that context-dependent preferences are ecologically rational (in other words, they 
convey a statistical or strategical advantage over unbiased representations; McNamara et al., 2012). 
In a similar vein, it could be proposed that unbiased value representations are computationally more 
costly, making relative or context-dependent encoding an efficient solution. Consistent with this idea, 
a recent study indicates that human participants are capable of adaptatively modulating their value 
representations from relative to absolute as they learn that the latter scheme is more advantageous 
(Juechems et al., 2022). Another study confirmed that value representations are somehow flexible 
by showing that shifting the attentional focus from subject emotions to perceive outcome shifts the 
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balance from relative to unbiased value encoding (Hayes and Wedell, 2022). However, neither of these 
studies manage to report situations in which the representational code was fully context-independent.

Taking into account that relative value encoding has been shown in a plethora of species and 
situations (Yamada et al., 2018; Conen and Padoa-Schioppa, 2019; Pompilio and Kacelnik, 2010; 
Pompilio et al., 2006; Solvi et al., 2022; Matsumoto and Mizunami, 2004; Ferrucci et al., 2019), it 
seems also reasonable to suppose that these findings stem from some deep preserved principles of 
how (value-based) information is encoded and represented in the brain. Accordingly, normalization 
naturally emerges as a solution to maximize the gain function between underlying stimuli (whose 
range may vary greatly) and neural response (Barlow, 1961). Crucially, and consistently with our 
results, while there is ample evidence that the divisive normalization rule provides a good account 
of information encoding in the perceptual system (Carandini and Heeger, 2011), several primate 
neurophysiological studies indicate the value-related signals in dopaminergic neurons (Tobler et al., 
2005) and the orbitofrontal cortex (Padoa-Schioppa, 2009; Kobayashi et  al., 2010): hubs of the 
brain valuation system (Bartra et al., 2013; Pessiglione and Delgado, 2015). Similar findings have 
been replicated in human fMRI (Burke et al., 2016; Cox and Kable, 2014; Pischedda et al., 2020). 
On the other side, neural evidence of divisive normalization in value-based decision-making is scant in 
the brain valuation system (but see Yamada et al., 2018), although it remains possible that activity in 
the perceptual and attentional systems (such as the parietal cortex) displays signs of divisive normal-
ization (Louie et al., 2011).

Multiple elements of our results concordantly show that divisive normalization does not provide a 
good account of subjective value representation in human reinforcement learning. More precisely, we 
were concerned about whether at the outcome stages the subjective values of rewards were normal-
ized according to a divisive (or range) normalization rule (Juechems et al., 2022; Louie, 2022). It is 
nonetheless still possible that this rule provides a good description of human behavior in other value-
based decision-making domains. In fact, most of the previous studies claiming evidence for divisive 
normalization used other tasks involving items whose values are described (such as snacks or lotteries 
food) and have not to be extracted from experience (Louie et al., 2013; Webb et al., 2021; Bucher 
and Brandenburger, 2022; Robinson and Tymula, 2019). In addition, our study only addressed value 
normalization of the outcome magnitude space and did not address whether the same rule would 
apply to other outcome attributes, such as probability (Daviet and Webb, 2023).

However, it is worth noting that evidence concerning previous reports of divisive normalization in 
humans has been recently challenged and alternative accounts, such as range normalization, have not 
been systematically tested in these datasets (Gluth et al., 2020; Webb et al., 2020, although see 
Webb et al., 2021 for an exception, where nonetheless the range and the divisive models were not 
given equal chances due to different parametrization). It is worth mentioning that the range normal-
ization principle has been recently successfully adapted to account for decision-making under risk 
(Kontek and Lewandowski, 2018). On the other side, another recent study compared range and 
divisive normalization in multi-attribute, description-based decision problems and found evidence for 
divisive normalization (Daviet and Webb, 2023). Taken together, we believe that our and other recent 
findings call for a critical appraisal of normalization in value-based decision-making comparing with 
alternative models and using highly diagnostic experimental designs, as the one used here.

On the other side, by using a reinforcement learning framework, our design has the advantage that 
it can be readily translated into animal research to further extend and characterize the neural mecha-
nisms underlying these findings. Further research will also determine whether the range normalization 
rule also applies to primary (positive and negative) rewards even if previous evidence (in humans and 
animals) suggests that context-dependent principles apply to food and electric shocks (Yamada et al., 
2018; Conen and Padoa-Schioppa, 2019; Pompilio and Kacelnik, 2010; Pompilio et al., 2006; Solvi 
et al., 2022; Matsumoto and Mizunami, 2004; Ferrucci et al., 2019; Vlaev et al., 2009).

Despite the fact that an even a ‘naïve’ range normalization presents several computational advan-
tages compared to divisive normalization (such as the fact of being easily translatable to partial feed-
back and punishment avoidance tasks; Bavard et al., 2018; Bavard et al., 2021), we also showed that 
its fit was far from perfect and there was still room for improvement. For instance, the weighted range 
normalization rule, although descriptively accurate, is silent concerning its cognitive origin mecha-
nism. Future research, for example, featuring eye-tracking, will be necessary to shed light on these 
aspects. Future research will also be needed to assess the extent to which the same rule applies to 
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vast decision spaces involving more than three options. Finally, further experiments will be needed to 
generalize the current models to partial feedback situations where the contextual variables have to be 
inferred and stored in memory.

Despite the fact that including the (attentional) weighting parameter improved the quality of fit 
(both in terms of out-of-sample log-likelihood and model simulations) of range normalization process, 
we acknowledge that some features of the data were still not perfectly accounted. For instance, even 
if the effect was small in size, from averaging across several experiments it appeared that the choice 
rate for the high-value options in the trinary contexts was higher compared to those in the binary 
ones. Although this feature provides strong evidence against the divisive normalization framework 
(which predicts the opposite effect), it is also not coherent with the range normalization process. It 
could be hypothesized that other cognitive and valuation mechanisms concur to generate this effect, 
such as instance-based or comparison-based decision valuation processes where the options in the 
trinary contexts would benefit from an additional (positive) comparison (Gonzalez and Lebiere, 2005; 
Vlaev et al., 2011).

To conclude, while our results cast serious doubt about the relevance of the divisive normaliza-
tion principle in value-based decision-making (Glimcher, 2022), they also establish once again that 
context-dependence represents one of the most pervasive features of human cognition and provides 
further insights into its algorithmic instantiation.

Materials and methods
Participants
Across three experiments, we recruited 500 participants (227  females, 243  males, 30  N/A, aged 
26.44 ± 8.31 years old) via the Prolific platform (https://www.prolific.co). The research was carried out 
following the principles and guidelines for experiments including human participants provided in the 
Declaration of Helsinki (1964, revised in 2013). The INSERM Ethical Review Committee/IRB00003888 
approved the study, and participants were provided written informed consent prior to their inclusion. 
The results presented in the main text are those of Experiment 1 (N = 150) and Experiment 3 (N = 200). 
The results of an alternative design (Experiment 2) are presented in Figure 2—figure supplement 2 
and Figure 6—figure supplement 1. To sustain motivation throughout the experiment, participants 
were given a bonus depending on the number of points won in the experiment (average money won 
in pounds: 5.05 ± 0.50, average performance against chance during the learning phase and transfer 
phase: M = 0.74 ± 0.087, t(149) = 34.04, p<0.0001, d = 2.78). The data of one participant for the 
explicit phase was not included due to technical issues. A pilot online-based experiment was originally 
performed (N = 40, the results are also presented in Figure 2—figure supplement 1).

Behavioral tasks
Participants performed an online version of a probabilistic instrumental learning task, instantiated as 
a multiarmed bandit task. After checking the consent form, participants received written instructions 
explaining how the task worked and that their final payoff would be affected by their choices in the 
task. During the instructions, the possible outcomes in points (from 0 to 100 points) were explicitly 
showed as well as their conversion rate (1 point = 0.02 pence). The instructions were concluded with a 
short three-item quiz to make sure participants’ understanding of the task was sufficient. The instruc-
tions were then followed by a short training session of 12 trials aiming at familiarizing the participants 
with the response modalities. If participants’ performance during the training session did not reach 
60% of correct answers (i.e., choices toward the option with the highest expected value), they had to 
repeat the training session. Participants could also voluntarily repeat the training session up to two 
times and then started the actual experiment.

In our main task, options were materialized by abstract stimuli (cues) taken from randomly gener-
ated identicons, colored such that the subjective hue and saturation were very similar according to 
the HSLUV color scheme (https://www.hsluv.org). On each trial, two or three cues were presented 
on different positions (left/middle/right) on the screen. The position of a given cue was randomized, 
such that a given cue was presented an equal number of times on the left, the middle, and the right. 
Participants were required to select between the cues by clicking on one cue. The choice window was 
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self-paced. A brief delay after the choice was recorded (500 ms); the outcome was displayed for 1000 
ms. There was no fixation screen between trials.

Experimental design (version a)
The full task consisted of three phases: one learning phase and two elicitation phases. During the 
learning phase, cues appeared in fixed pairs/triplets. Each pair/triplet was presented 45 times, leading 
to a total of 180 trials. Within each pair/triplet, the cues were associated to a deterministic outcome 
drawn from a normal distribution with variable means ‍µϵ

[
0, 100

]
‍ and fixed variance ‍σ = 4‍ (Table 1). 

At the end of the trial, the cues disappeared and were replaced by the outcome. Once they had 
completed the learning phase, participants were displayed with the total points earned and their 
monetary equivalent.

After the learning phase, participants performed two elicitation phases: a transfer phase and an 
explicit rating phase. The order of the elicitation phases was counterbalanced across participants. In 
the transfer phase, the 10 cues from the learning phase were presented in all possible binary combi-
nations (45, not including pairs formed by the same cue). Each pair of cues was presented four times, 
leading to a total of 180 trials. Participants were explained that they would be presented with pairs 
of cues taken from the learning phase, and that all pairs would not have been necessarily displayed 
together before. On each trial, they had to indicate which of the cues was the one with the highest 
value. In the explicit rating phase, each cue from the learning phase was presented alone. Partici-
pants were asked what was the average value of the cue and had to move a cursor ranging from 0 
to 100. Each cue was presented four times, leading to a total of 40 trials. In both elicitation phases, 
the outcome was not provided in order not to modify the subjective option values learned during the 
learning phase, but participants were informed that their choices would count for the final payoff.

Experimental design (versions b and c)
In the learning phase, we added forced-choice trials to the 180 free-choice trials (Chambon et al., 
2020). In these forced trials, only one option was selectable and the other cue(s) were shaded. We 
added five forced-choice trials per option, leading to a total of 230 trials in the learning phase. In 
version b, even in the forced-choice trial, the participants could only see the outcomes of all options. 
In version c, participants could only see the outcome of the chosen option. The elicitation phases 
(transfer and explicit rating) remained unchanged.

Experiment 3
In the learning phase, cues appeared in fixed triplets only. Each triplet was presented 45 times, leading 
to a total of 180 trials. We used a 2 × 2 design manipulating the range spread (as in Experiment 1a) 
and the option availability: in half of the contexts, for some proportion of trials (Experiment 3a: 50%; 
Experiment 3b: 75%), the most favorable option was unavailable (Figure 5A). It was displayed on the 
screen with a shaded mask and was not clickable. At the end of each trial, all cues disappeared and 
were replaced by the outcome (shaded outcome for the nonclickable option). In the transfer phase, 
the 12 cues from the learning phase were presented in all possible binary combinations (66, not 
including pairs formed by the same cue). Each pair of cues was presented two times, leading to a total 
of 132 trials. In the explicit phase, each cue was presented two times, leading to a total of 24 trials.

Behavioral analyses
For all experiments, we were interested in three different variables reflecting participants’ learning: (1) 
correct choice rate in the learning phase, that is, choices directed toward the option with the highest 
objective value; (2) choice rate in the transfer phase, that is, the number of times an option is chosen, 
divided by the number of times the option is presented; and (3) subjective valuation in the explicit 
phase, that is, average reported value per option. Statistical effects were assessed using multiple-way 
repeated-measures ANOVAs with range amplitude (narrow or wide) and number of presented options 
(binary or trinary decision problem, Figure  1) as within-participant factor and experiment version 
(a,b,c) as between-participant factors. Post hoc tests were performed using one-sample and two-
sample t-tests for respectively within- and between-experiment comparisons. To assess overall perfor-
mance, additional one-sample t-tests were performed against chance level (0.5 – two-option contexts 
– and 0.33 – three-option contexts). We report the t-statistic, p-value, and Cohen’s d to estimate 
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effect size (two-sample t-test only). Given the large sample size (n = 500), central limit theorem allows 
us to assume normal distribution of our overall performance data and apply properties of normal 
distribution in our statistical analyses, as well as sphericity hypotheses. Concerning ANOVA, we report 
Levene’s test for homogeneity of variance, the uncorrected statistical, as well as Huynh–Feldt correc-
tion for repeated-measures ANOVA when applicable (Girden, 1992), F-statistic, p-value, partial eta-
squared (ηp²), and generalized eta-squared (η²) (when Huynh–Feldt correction is applied) to estimate 
effect size. All statistical analyses were performed using MATLAB (https://www.mathworks.com) and 
R (https://www.r-project.org).

Computational models
The goal of our models is to estimate the subjective value of each option and choose the option that 
maximizes the expected reward (in our case, with the highest expected value). At each trial ‍t‍, in each 
context ‍s‍, the expected value ‍Q‍ of each option ‍i‍ is updated with a delta rule:

	﻿‍ Qt
(
s, i

)
= Qt−1

(
s, i

)
+ αX ∗ δt‍� (4)

where ‍αX‍ is the learning rate and ‍δt‍ is a prediction error term. For all our models, at each trial, 
the chosen and unchosen options are updated with two distinct learning rates for chosen (‍αC‍) and 
unchosen (‍αU‍) options, and separate, outcome-specific, prediction error terms ‍δt‍ , calculated as the 
difference between the subjective outcome ‍u

(
Ri
)
‍ and the expected one:

	﻿‍ δt = u
(
Ri
)
− Qt−1

(
s, i

)
‍� (5)

We modeled participants’ choice behavior using a softmax decision rule representing the prob-
ability for a participant to choose one option ‍a‍ over the other options – one alternative in binary 
contexts (‍n = 2‍), two in trinary contexts (‍n = 3‍) in each context ‍s‍:

	﻿‍
Pt

(
s, a

)
= eQt

(
s,a

)
∗β

∑n
k=1 eQt

(
s,k

)
∗β

‍�
(6)

where ‍n‍ is the number of outcomes presented in a given trial (‍n = 2; n = 3‍) and ‍β > 0‍ is the inverse 
temperature parameter. High temperatures (‍β → 0‍) cause the action to be all (nearly) equiprobable. 
Low temperatures (‍β → +∞‍) cause a greater difference in selection probability for actions that differ 
in their value estimates (Sutton and Barto, 1998).

We compared four alternative computational models: the unbiased (UNBIASED) model, which 
encodes outcomes on an absolute scale independently of the choice context in which they are 
presented; the range normalization (RANGE) model, where the reward is normalized as a function of 
the range of the outcomes, the divisive normalization (DIVISIVE) model, where the reward is normal-
ized as a function of the sum of all the outcomes; and the nonlinear range normalization (RANGEω) 
model, where the normalized outcome is power-transformed with an additional free parameter.

Unbiased model
At trial ‍t = 0‍, for all contexts ‍Qt=0 = 50.‍ For each option ‍i‍, the subjective values ‍u

(
Ri
)
‍ are encoded as 

the participants see the outcomes, that is, their objective value in points.

	﻿‍ u
(
Ri
)

= Ri, Ri ∈
[
0, 100

]
‍� (7)

Range normalization model
At trial ‍t = 0‍, for all contexts ‍Qt=0 = 0.5.‍ The subjective values ‍u

(
Ri
)
‍ are encoded depending on the 

value of the other options, specifically the maximum and the minimum available rewards.

	﻿‍
u
(
Ri
)

=
Ri − min

(
R :

)

max
(
R :

)
− min

(
R :

)
‍�

(8)

where ‍max
(
R :

)
‍ and ‍min

(
R :

)
‍ are, respectively, the maximum and minimum outcomes presented in 

a given trial. In version c, where only the reward of the chosen option is displayed, the outcomes of 
unchosen options are replaced with the last seen outcomes for these options (Spektor et al., 2019).
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Divisive normalization model
At trial ‍t = 0‍, for all options ‍Qt=0 = 0.5.‍ The outcomes are encoded depending on the value of all the 
other options, specifically the sum of all available rewards.

	﻿‍
u
(
Ri
)

= Ri∑n
k=1 Rk ‍�

(9)

where ‍n‍ is the number of outcomes presented in a given trial (‍n = 2; n = 3‍). In version c, where only the 
reward of the chosen option is displayed, the outcomes of unchosen options are replaced with the last 
seen outcomes for these options (Spektor et al., 2019).

Nonlinear range normalization model
At trial ‍t = 0‍, for all contexts ‍Qt=0 = 0.5.‍ The subjective values ‍u

(
R
)
‍ are encoded depending on the 

value of the other options, specifically the maximum and the minimum available rewards. This normal-
ized outcome is then set to the power of ‍ω‍, with ‍0 < ω < +∞‍:

	﻿‍
u
(
Ri
)

=
(

Ri − min(R : )
max(R : ) − min(R : )

)ω

‍�
(10)

where ‍max
(
R :

)
‍ and ‍min

(
R :

)
‍ are, respectively, the maximum and minimum outcomes presented in 

a given trial. In version c, where only the reward of the chosen option is displayed, the outcomes of 
unchosen options are replaced with the last seen outcomes for these options (Spektor et al., 2019).

Conditional, nonlinear range normalization model
Finally, in Experiments 3a and 3b only, we tested a more complex version of the model, which allowed 
for different weighting parameters for obtained (‍ωc‍) and forgone (‍ωu‍) outcomes. The weighting 
parameters were allowed same range as before.

Ex ante simulations
The model predictions displayed in Figure 1C were obtained by simulating choices of artificial agents. 
The simulated choices were equivalent to those later performed by the participants, that is, 180 trials 
(45 per learning contexts) in the learning phase (where the deterministic outcomes were drawn from 
a normal distribution with variable means ‍µϵ

[
0, 100

]
‍ and fixed variance ‍σ = 4‍) and 180 trials (4 per 

comparison) in the transfer phase. The update rule for the option values is described in Equations 1 
and 2. Predictions for each experiment were simulated for a set of 50 agents to match our number of 
participants per version. Each agent was associated with a set of parameters ‍

[
β,α|c,αu

]
‍ for the inverse 

temperature, the learning rate of the chosen option, and the learning rate for unchosen options, 
respectively. The parameters were independently drawn from prior distributions, which we took to be 
Beta(1.1,1.1) for the learning rates and Gamma(1.2,5) for the inverse temperature (Daw et al., 2011). 
The value of the inverse temperature is irrelevant in the learning phase because the feedback is always 
complete, which means that the options should converge, in average, to their subjective average 
value independently of the choice, provided that the learning rates are different from 0. Moreover, in 
the transfer phase, to obtain the agents’ preferences based on the learned option values, we chose 
to use an argmax decision rule instead of a softmax decision rule. At each trial ‍t‍ in the transfer phase, 
comparing option ‍a‍ and option ‍b‍, the probability of choosing option ‍a‍ is calculated as follows:

	﻿‍

Pt
(
a
)

=





1 if Qf
(
a
)

> Qf
(
b
)

0.5 if Qf
(
a
)

= Qf
(
b
)

0 if Qf
(
a
)

< Qf
(
b
)
‍

 

�

(11)

where ‍Qf ‍ is a vector of the final ‍Q‍-values at the end of the learning phase.
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